Enabling Next Generation Carcinogenicity Assessment

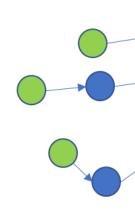
Adrian Fowkes, Alex Cayley and Susanne Stalford Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS

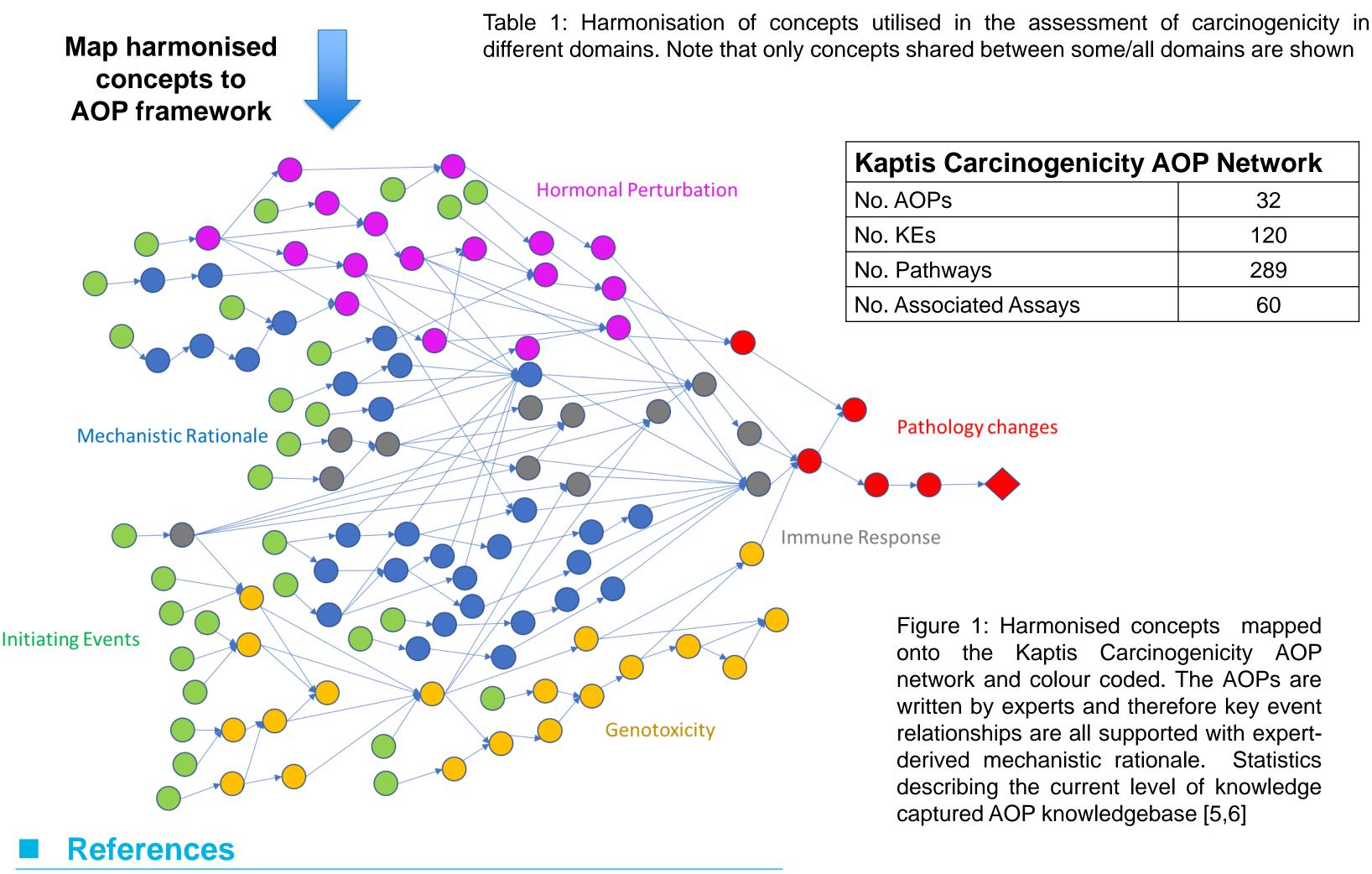
Introduction

There are currently many initiatives underway across the globe aiming to improve the quality of human carcinogenicity safety assessment by utilising existing data from established studies and new approach methods (NAMs) to reduce our reliance on animal testing. Although the context of decisions made using these new paradigms may vary significantly according to use case, there are many commonalities between the concepts used to build them. Development of a universal methodology that enables weight-of-evidence (WoE), integrated approaches to testing and assessment (IATA), or other approaches for carcinogenicity assessments will allow translation between paradigms and facilitate better re-use of science and evidence. AOPs have been shown to provide a framework to organise, contextualise and rationalise evidence for ICH S1B(R1) WoE assessments [1]. Thus, in this work we analyse the utility of AOPs as a framework for carcinogenicity assessment across different domains.

Methods

Three different areas of industry, or toxicity spaces (from here on classified as domains) and examples of developed/developing WoE assessments or IATAs were evaluated:


- Pharmaceuticals ICH S1B(R1) WoE assessment framework (in regulation) [2]
- Agrochemicals ReCAAP WoE assessment framework (developed and published) [3]
- Non-genotoxic carcinogenicity OECD Expert working group IATA framework (in development, progress published) [4]


For each of these domains, the concepts described in each example approach were extracted and compared to find commonalities and these concepts were harmonised (where possible). The adverse outcome pathway (AOP) concept (as used in the in silico solution Kaptis [5]) was then examined to identify how concepts map to approaches which capture evidence and how decisions can be supported

Conclusions

While there will necessarily be multiple ways of improving on the historical paradigm of animal testing for carcinogenic potential of a substance within different domains, there are key concepts and knowledge which can be shared. Capture and digitisation of the data and evidence relating to these concepts in a way that is flexible enough to allow translation between approaches will not only allow different approaches and evidence to be used in a consistent and interoperable way between use cases, but also facilitate the evolution of carcinogenicity safety assessments as new paradigms continue to be developed.

Harmonised Concepts
Initiating Ev
Pathology C
Hormonal Perturbation
Genotoxicity
Immune Res
Exposure
Mechanistic Rationale

[1] Stalford et al, Regul Toxicol Pharmacol, 2021; [2] ICH S1B(R1); [3] Hilton et al, Regul Toxicol Pharmacol, 2022; [4] Jacobs et al, Arch Toxicol, 2020; [5] Kaptis v2.0.0 prerelease; [6] Cayley et al, ALTEX, 2023

Commonalities in Domain WoE/IATA Examples and How AOPs can enable Decision Making

	Industry/Domain				
	Pharmaceutical (ICH S1B(R1)) [2]	Agrochemical (ReCAAP Framework) [3]	Non-Genotoxicity (OECD IATA EWG) [4]	Key Differ	
ents	On-target safety; Secondary Pharmacology		MIEs	ReCAAP d account tar	
hanges	Histopathology from chronic studies	Findings from acute and sub-chronic findings	Cell proliferation; Changes in morphology	OECD IATA overall view others look changes at periods	
n	Hormonal perturbation	Hormonal perturbation		OECD IATA specifically changes, b general cha	
y	Genotoxicity	Genotoxicity		OECD IATA genotoxicit before app	
sponse	Immune modulation	Immune suppression	Immune response	ReCAAP s suppressio	
		Use patterns and exposure scenarios	Exposure	ICH S1B(R based appr rationale ca the WoE ba exposure n	
	Additional investigative studies	Mechanistic support	Building common mechanisms into IATA	ICH S1B(R additional s determine findings ca rationalised	

rences

does not take into arget(s)

TA takes more ew, whereas ok for tissue at different time

TA does not look ly at hormonal but looks for more hanges

TA has ity as prerequisite plying IATA

specifies immune

(R1) is a hazardproach, but some can be applied in based on rat margin (R1) asks for studies to mechanisms

cannot be

Ρ	P Network		
	32		
	120		
	289		
	60		

After the concepts were extracted for each domain example, it was clear there were commonalities in concepts used across the frameworks (Table 1). While these have been described in different ways, they can be harmonised, thus showing that a common framework to help in decision making could be used for each domain.

The harmonised concepts can be mapped onto the AOP framework (Figure 1), demonstrating that this framework is applicable for organising evidence for example domains. Using AOPs which are annotated with evidence can bring clarity to these types of assessments, giving consistent, scientifically robust and transparent answers to questions that can be asked during the assessment process [6] (Figure 2). It has already shown how AOPs can be used to help with WoE assessments for ICH S1B(R1) [1] (Figure 3). At each stage of the assessment, the relevant questions can be asked to direct testing and rationalise findings.

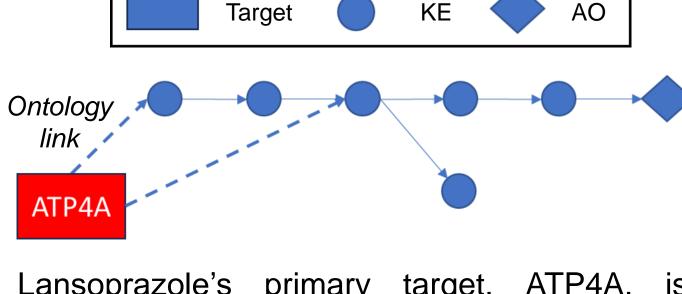


Figure 2: illustration of how AOPs can be used to direct testing of mechanistic hypotheses (Direct) or help give context to adverse findings coming from assays measuring AOs (Rationalise).

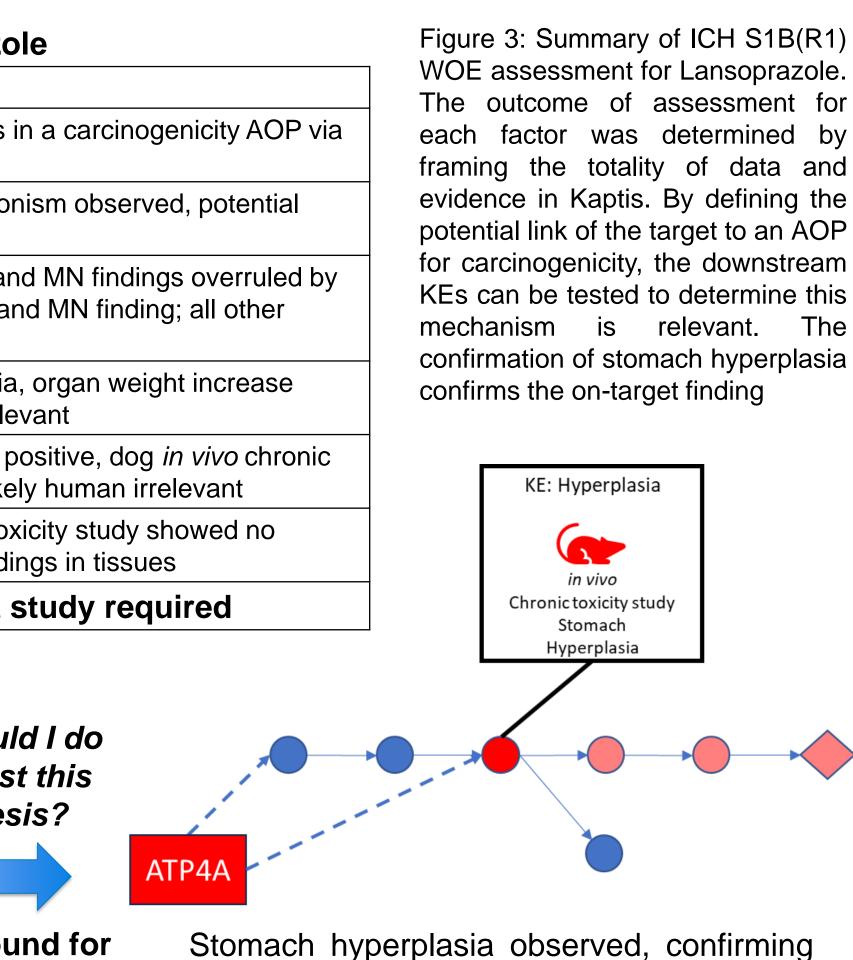
Example: ICH S1B(R1) WoE assessment for Lansoprazole

Factor	Kaptis Outcome	Reasoning
On-target safety	Positive	ATP4A linked to KEs in ontologies
Secondary Pharmacology	Positive	AhR binding and agonis carcinogenic MoA
Genotoxicity	Negative	Positive <i>in vitro</i> CA and negative <i>in vivo</i> CA and studies negative
Histopathology	Positive	Stomach, hyperplasia, o observed, human releva
Hormonal Perturbation	Negative	Some findings in rat pos studies negative. Likely
Immune Modulation	Negative	Rat <i>in vivo</i> chronic toxic immune relevant finding

Overall: compound is likely to be carcinogenic – no rat study required

What should I do next to test this hypothesis?

Test compound for targeting ATP4A can result in findings which hyperplasia in could lead to carcinogenicity appropriate assay


Lansoprazole's primary target, ATP4A, is expressed in stomach tissues. No known AOP but ontologies can link target to KEs in an AOP which results in stomach tumours.

What should I do next to test hypothesis?

What should I monitor in the clinic?

Rationalise finding What has caused this adverse finding?

