Analysis of the sensitisation potential of extractables and leachables in parenteral pharmaceutical products

Martyn L. Chilton,¹ Patricia Parris,² Geraldine Whelan³

1. Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS 2. Pfizer Limited, Ramsgate Road, Sandwich, Kent, CT13 9NJ 3. GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY

Introduction

- Extractables and leachables (E&Ls) are chemicals which can potentially migrate from container closure systems or manufacturing components into drug products, under exaggerated or normal conditions, respectively. Leachables should undergo a toxicological risk assessment (TRA) which may include potential to induce sensitisation.^{1,2}
- This study analysed E&L sensitisation prevalence and potency, to inform a risk-based approach to prevent potential induction of sensitisation from low-level parenteral E&Ls.³
- There are no approved assays to identify systemic sensitisation. The local lymph node assay (LLNA) has the potential to detect both dermal and respiratory sensitisers, based on a common mechanism of activation and proliferation of T cells in the lymph nodes.
- Dermal sensitisation data can be a conservative indication of systemic sensitisation potential, by considering activation of the immune system via any route of administration.

Sensitisation data is available for >400 E&Ls

- 875 E&L structures were sourced from the ELSIE and PQRI databases.^{1,3}
- Sensitisation data for 407 E&Ls was found in Vitic (v5.0.0, 2022.1.0 DB),⁴ OECD QSAR Toolbox (v4.5), REACH dossiers, ELSIE knowledge base, and the scientific literature.
- Most chemicals with sensitisation data were tested via the dermal route (n=405, >99%) in various species, while a few had human data via the respiratory route (n=46, 11%).

Species distribution of the available dermal and respiratory sensitisation data

Sensitisation endpoint	Species					
	Guinea pig	Human	Mouse	Other	Multiple	Total
Dermal	181	52	49	4	119	405
Respiratory	0	46	0	0	0	46

Most E&Ls are not strong/extreme sensitisers

- All positive sensitisation data was reviewed so that each chemical could be assigned an ECETOC potency category of either weak, moderate, strong or extreme.⁵
- Most E&Ls with data are non-sensitisers (n=308, 76%), while sensitising E&Ls are more likely to be weak/moderate (n=78, 19%) than strong/extreme (n=21, 5%).

The eight most potent extremely sensitising E&Ls in the dataset

Name	Structure	LLNA EC3 (%)	
Benzo[a]pyrene		0.0009	The E
(Hydro)quinones	HO ^{OH} _{Bu} O	0.005-0.0099	They
Iso(thio)cyanates	(Plus TDI dimer and trimer)	0.028-0.052	Isocya so a

In silico potency predictions are conservative

- Potency predictions from a k-NN model⁷ in Derek Nexus (v6.2.1, 2022 2.0 KB)⁴ were used for E&L sensitisers where experimental potency values were not available. • These predicted values occupy a more potent distribution than the experimental values.

Comparison of the distribution of experimental and predicted potency values

• 91% of the experimental sensitisers which are assigned a potency value by Derek Nexus are predicted to be in the correct or a more potent ECETOC potency category.

Comments

- EC3 values are less reliable as they e been extrapolated from the data. are also not commonly seen E&Ls.
- anates are very prone to hydrolysis⁶ re unlikely to be stable leachables.

Existing safety thresholds are highly protective

Distribution of E&L potency values and comparison to existing safety thresholds

^a Probability that an E&L will be either non-sensitising or sensitising but less potent than the safety threshold.

Conclusions

References

- PQRI, Safety thresholds and best demonstrated practices for
- extractables and leachables in parenteral drug products, **2021**. Parris et al., Crit. Rev. Toxicol., 2022, 52, 125-138.
- Parris et al., PDA J. Pharm. Sci. Technol., 2023, pdajpst.2022.012811
- https://www.lhasalimited.org/solutions/skin-sensitisation-assessment/.

Abstract number: 3051

• The potency values were converted to a dose per day unit^{2,3} and plotted as a histogram, before a gamma curve was fit to the data to describe the potency distribution.³ • Five existing safety thresholds were plotted,^{1,8,9} including some less-than-lifetime (LTL) durational limits, and the percentage of the distribution covered by each was calculated. • By accounting for prevalence of sensitisation in E&Ls (24.3%), the probability of any E&L being less potent than each safety threshold was shown to be very high (95-99%). • This analysis is conservative as it does not differentiate between extractables and leachables, but this is a critical distinction to make when conducting a chemical TRA.

• Very few of the over 400 E&Ls analysed in this study are strong/extreme sensitisers. • E&L sensitisation potency can be conservatively predicted *in silico* when data is lacking. • Analysis of the potency and prevalence of sensitisers in the available dataset identified various safety thresholds to be \geq 95% protective against the induction of sensitisation. • This supports the use of ICH M7 and ELSIE thresholds as the safety concern threshold for analytical testing of E&Ls and when establishing the analytical evaluation threshold.

ECETOC, Contact sensitisation: Classification according to potency, 2003. Yakabe et al., Environ. Sci. Technol., 1999, 33, 2579-2583. Canipa et al., *J. Appl. Toxicol.*, **2017**, 37, 985-995. ICH M7(R2), https://www.ich.org/page/multidisciplinary-guidelines.

Masuda Herrera et al., PDA J. Pharm. Sci. Technol., 2022, 76, 369-383.