
◼ Introduction

The evaluation of forced degradation studies is a key component of drug safety assessments. 

These studies employ various conditions to stress-test pharmaceutical compounds, such as 

oxygen (air) and radical initiators to evaluate liability towards oxidative damage. Much of the 

degradation chemistry that occurs in these tests can be predicted in silico using substructural 

patterns encoded in the degradation prediction tool Zeneth1 (Lhasa Limited); however, some 

reactivity cannot be accurately predicted from structural patterns alone since it is dependent 

on combinations of features that cannot be encoded in a finite number of patterns. Hydrogen 

abstraction by peroxyl radicals is the chain-propagating step in the homolytic cleavage of C-H 

bonds within the structure, a common degradation reaction for all molecules stored in air 

(autoxidation). The strength of the C-H bond being broken, relative to the strength of the O-H 

bond in a hydroperoxide (i.e. the bond being made) is a pivotal parameter to assess this 

reactivity. This strength can be quantified as the Bond Dissociation Enthalpy (BDE).

We present a gradient-boosted tree model, based on a dataset of public data2

which we have enhanced with additional structures with BDEs calculated at a comparable 

level of theory (M06-2X/def2-TZVP) for additional elements that are of relevance to drug 

structures (F, Cl, Br, I, P, S) and additional chemical environments. This model achieves 

predictive performance against an external test set within the accuracy of experimentally 

measured BDEs3, and can be used to improve the prediction accuracy of these radical-

mediated degradation reactions by comparing the relative BDE to the hydroperoxide O-H 

bond, using a sigmoid curve to avoid a hard cut-off between reactive and unreactive 

predictions.

◼ Data Curation and Enrichment

The data generated and made public by the Alfabet2 (https://bde.ml.nrel.gov/) 

project was used as an initial starting point for the creation of an in-house model, and 

subsequently augmented to add additional atom types4 such as the halogens, sulfur and 

phosphorus. Restriction to C-H BDEs allows for a simplification of the BDE calculation, since 

one of the formed radicals is always H•. Calculations can thus be performed on RH and R•.

◼ Likelihood modulation

The BDE predictor is used to 

influence a predicted degradant’s likelihood 

score. Instead of a rigid likelihood for 

a transformation, such as “likely”, 

likelihoods will vary depending on the 

strength of the C-H BDE for the relevant 

bond in the parent structure.

A sigmoid curve was chosen to avoid 

values too close to 1000 or zero, and 

parametrized such that a score of 700 

(“likely”) corresponds to 90 kcal/mol, and 

500 (“equivocal”) to 92 kcal/mol. This is 

based on a reported O-H bond strength of 

87 kcal/mol.
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◼ Implementation

Following exploratory approaches with a wide 

variety of model types and hyperparameters, 

tree-based models were shown to be most 

predictive. The descriptors used were a 

circular fingerprint of atom types, as previously 

published4. These atom types take both the 

steric and electronic nature of the atom and its 

substituents into account. The XGBoost

library5 was used in Python (3.7) to develop an 

exportable model file which can be read into 

Java to be combined with our internal 

cheminformatics toolkit, allowing consistency 

in performance between otherwise-

incompatible languages, rather than a model 

that has been trained in one language having 

to be extrapolated to another without further 

validation.

Performance against worst-case test set 

(tertiary sites) is within typical error of BDE 

measurements, with MAE of 1.03 kcal/mol, 

RMSE of 1.82 kcal/mol and R2 of 0.91.
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◼ Degradation prediction

Zeneth1 (currently on version 

8.1.1) is a knowledge-based expert system for the 

prediction of forced degradation. The software 

incorporates a knowledgebase of transformations, 

which, if the patterns and conditions match the 

user input, predicts the structures of potential 

degradants.

Degradants in Zeneth are 

associated with likelihood scores, which take the 

range from 0-1000; these reflect expert 

understanding of how likely the degradant is to be 

formed, based on the proportion of similar 

substructures that are observed to have 

comparable reactivity (or not).
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◼ Conclusions

• Machine learning can be used, given a sufficiently large dataset, to predict BDE with 

accuracy comparable to experiment.

• Inter-language compatibility of archived ML models enhances repeatability.

• The use of a predictive BDE model can be valuable for refining expert, pattern-based 

predictions of radical-mediated degradation pathways.

Performance against experimentally-measured BDE 

values2. A slight underprediction is observed, which is 

both acceptable (additional conservatism) and expected 

(model is trained on calculated, not experimental, data).
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