

Assessing the dermal sensitisation potency of extractables and leachables using existing data and *in silico* methods

Martyn Chilton

Principal Scientist

martyn.chilton@lhasalimited.org

Agenda

- Introduction
- In silico tools for predicting sensitisation
 - Expert knowledge
 - Machine learning
- Sensitisation data for E&L
 - Dermal (hazard and potency)
 - Respiratory
- Predicting the sensitisation potential of E&L
 - Models (expert knowledge and machine learning)
 - Proposed workflow
- Conclusions

Introduction to Lhasa Limited

- Established in 1983
- HQ located in Leeds, United Kingdom
- Not-for-profit & Educational Charity

- Facilitate collaborative data sharing projects in the chemistry-related industries
- Controlled by our members
- Creators of knowledge base, statistical and database systems

Introduction

- There is a recognised need to assess the sensitisation potential of E&L
 - Typically approached by applying a safety threshold, such as those proposed by PQRI¹

- However, dermal sensitisation potency is known to span 5 orders of magnitude
 - Thresholds may lead to excessive control of weak/moderate sensitisers
 - Can *in silico* models help identify strong/extreme sensitisers?
- 1. Ball et al., *Toxicol. Sci.* **2007**, *97*, 226-236; Broschard et al, *Regul. Toxicol. Pharmacol.* **2016**, *81*, 201-211

In silico tools for predicting sensitisation

- Expert knowledge
 - Derek's skin sensitisation alerts
 - Predict binary sensitisation hazard
 - 100 alerts in the knowledge base
 - Explicit negative predictions available¹
 - Derek's respiratory sensitisation alerts
 - Predict binary sensitisation hazard
 - 12 alerts in the knowledge base
 - High Potency Category (HPC) alerts²
 - Identify reactive features likely to be associated with high potency (extreme sensitisers)
 - Published in the context of the Dermal Sensitisation Threshold
 - Recently have been updated and encoded into Derek³
- 1. Chilton et al., Regul. Toxicol. Pharmacol. 2018, 95, 227-235
- 2. Roberts et al., *Regul. Toxicol. Pharmacol.* **2015**, 72, 683-693
- 3. Chilton et al., Regul. Toxicol. Pharmacol. 2022, manuscript submitted

In silico tools for predicting sensitisation

- Expert knowledge
 - Dermal Sensitisation Thresholds^{1,2}

- 1. Safford et al., *Regul. Toxicol. Pharmacol.* **2015**, *7*2, 694-701
- 2. Chilton et al., Regul. Toxicol. Pharmacol. 2022, manuscript submitted

In silico tools for predicting sensitisation

- Machine learning
 - Self Organising Hypothesis Network (SOHN)¹
 - Well-established model for predicting in vitro mutagenicity
 - Could this approach be used to predict binary sensitisation hazard?
 - Similar reactivity-based mechanism of toxicity
 - Reasonable amount of data in the public domain
 - Derek's EC3 model²
 - Predicts EC3 values for chemicals firing a skin sensitisation alert
 - Uses an alert-based k-NN model to perform automated, mechanistic read-across
 OH
 k-NN model

- . Hanser et al., J. Cheminform. 2014, 6, 21
- 2. Canipa et al., J. App. Toxicol. 2017, 8, 985-995

Sensitisation data for E&L

• What sensitisation data is available for E&L?

Expert knowledge

- Derek alerts
 - How well does Derek predict dermal sensitisation?

Testset	Endpoint	Sensitivity (%)	Specificity (%)
Public dataset (n=3141)	Skin consitiontion	79	64
E&L dermal sensitisation dataset (n=229)	Skin sensilisation	60	83

• How well does Derek predict respiratory sensitisation?

Testset	Endpoint	Sensitivity (%)	Specificity (%)
Public dataset (n=247)	Respiratory sensitisation	36	100
	Skin sensitisation	80	67
E&L respiratory sensitisation dataset (n=37)	Respiratory sensitisation	36	100
	Skin sensitisation	79	83

• Skin sensitisation alerts cover known respiratory sensitisers well¹

1. Golden et al., Chem. Res. Toxicol. 2021, 34, 473-482

Machine learning

- SOHN model
 - How well does a machine learnt model predict dermal sensitisation?

Training set data	Training set size	Testset	Sensitivity (%)	Specificity (%)
Mouse (LLNA)	1236	5-fold cross-validation	66	76
		E&L dermal sensitisation dataset (n=229)	54	65
Human + mouse	1308	5-fold cross-validation	61	76
		E&L dermal sensitisation dataset (n=229)	48	69
Human + mouse + guinea pig	3141	5-fold cross-validation	59	72
		E&L dermal sensitisation dataset (n=229)	39	85

- Including more assays increases training set size but decreases model performance
- Models struggle to predict well within E&L chemical space

Expert knowledge + machine learning

- Derek alerts + SOHN model
 - Does combining two systems add value?

Testset	Model(s)	Sensitivity (%)	Specificity (%)
E&L dermal sensitisation dataset (n=229)	Derek (skin sensitisation alerts)	60	83
	SOHN (trained on LLNA data)	54	65
	Derek + SOHN (conservative)	75	58

- Adding a SOHN model does improve the sensitivity
- When the systems disagree, who is right?

Testset	Model(s)	Sensitivity (%)	Specificity (%)
Subset of E&L dermal sensitisation	Derek	58	78
(n=77)	SOHN	42	22

• Derek is correct 70% of the time when the two systems disagree

Expert knowledge + machine learning

• Derek alerts + k-NN model

• How well does a tiered approach predict potency?

Testset	Strong/	Non-sensitising/	Prediction
	extreme (%)	weak/moderate(%)	available (%)
E&L dermal potency sensitisation dataset (n=54)	83	91	91

- Accurate identification of strong/extreme sensitisers
- However, predictions are not always available
- Could the DSTs be used as additional worst-case scenario predictions?

Proposed workflow

Proposed workflow

• Derek alerts + k-NN model + DSTs

Testset	Strong/	Non-sensitising/	Prediction
	extreme (%)	weak/moderate(%)	available (%)
E&L dermal potency sensitisation dataset (n=54)	88	78	100

- Accurate identification of strong/extreme sensitisers
- Predictions are conservative
- Predictions are always available

Experimental potency

Proposed workflow

- Derek alerts + k-NN model + DSTs
 - Is there a risk of missing strong/extreme sensitisers using this approach?
- Tetramethylthiuram disulfide (137-26-8)
 - Reactive, predicted EC3 = 2.5% (moderate)
 - Median experimental EC3 = 0.70% (strong)
 - **5.2%** standard LLNA protocol, good dose-response observed, negative at 2.5% and 5% (Gerberick et al, Dermatitis 2005, 16, 157-202)
 - **0.70%** modified LLNA with 1% SLS pre-application to increase assay sensitivity (De Jong et al, Toxicol. Sci. 2002, 66, 226-232)
 - **0.66%** modified LLNA with 1% SLS pre-application to increase assay sensitivity (Van Och et al, Toxicology 2000, 146, 49-59)
 - Experimental potency likely to be over-estimated

Conclusions

- The sensitisation potential of E&L can be assessed using *in silico* methods
 - Expert knowledge can predict the dermal and respiratory sensitisation of E&L
 - However, a purely machine learnt approach struggles in this chemical space
- Combining expert knowledge with machine learning can improve performance
 - Derek alerts + SOHN model improves sensitivity, but 2nd system does not add value
 - Derek alerts + k-NN model performs well, but cannot always provide a prediction
- A novel E&L sensitisation workflow has been proposed
 - Uses Derek alerts + k-NN model + Dermal Sensitisation Thresholds
 - Can conservatively identify E&L which are strong/extreme sensitisers
 - These predictions could be used to inform further E&L safety assessment

Acknowledgements

- Lhasa Limited
 - Anax Oliveira
 - Mukesh Patel
- ELSIE
 - Patricia Parris
 - Sensitisation sub-stream

Thanks for listening

Any questions?

shared **knowledge** • shared **progress**

Lhasa Limited Granary Wharf House, 2 Canal Wharf Leeds, LS11 5PS Registered Charity (290866) +44(0)113 394 6020

info@lhasalimited.org www.lhasalimited.org

Company Registration Number 01765239