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To examine if the shared knowledge for the six endpoints could be used to improve

QSAR models, the federated data was combined with local public data to create hybrid

classification models, which were then validated using a challenging cluster cross

validation. The validation demonstrated that the approach resulted in improved QSAR

models, which were able to make more correct predictions over a wider area of

chemical space. These models will enable assessors to identify and act upon toxicity

liabilities earlier in their workflows.

Endpoint
Federated student 

model (MCC)

Knowledge transferred?

(MCC > 0.2)

COX-1 0.06 NO

COX-2 0.31 YES

GABA-A 0.19 NO

SERT 0.21 YES

DRD2 0.37 YES

CHRM1 0.42 YES

CHRM2 0.56 YES

hERG 0.36 YES

Federated data enables pre-competitive sharing 

of knowledge between organisations

Secondary pharmacology profiling using quantitative structure-activity relationship (QSAR) models

offer an efficient way to provide insight into biological properties during compound optimisation

and prioritisation [1]. The performance of these models is highly dependent on the quality and the

quantity of the data available to train them, particularly when investigating new areas of chemical

space.

Lhasa Limited has developed a federated learning platform called Effiris, which enables extraction

of knowledge from multiple proprietary data silos without loss of confidential information. The

approach labels a common set of public structures with endpoint predictions from teacher models

trained on proprietary data. Acting as an honest broker, Lhasa Limited consolidates the predicted

data from all the partners into a single robust dataset, whilst also performing quality checks. The

consolidated data is then shared with members, who are then able to combine this new data with

in-house and public data to generate hybrid models, which have learnt from multiple sources of

knowledge.
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• Federated learning enables the sharing of knowledge contained in proprietary data

silos without loss of confidential information

• Effiris is able to transfer bioactivity knowledge between organisations using

federated data and improve the accuracy and coverage of QSAR models

• The Effiris consortium will continue to share knowledge and work towards

developing a suite of federated QSAR models to support early-stage hazard

identification

• Deep learning and novel representation approaches will be examined to improve

knowledge transfer and support potency predictions using federated models.

To examine if knowledge has been successfully extracted and transferred across the

consortium, a classification model called the student was trained on the federated data

only. This model was validated against a test set and a minimum predictivity

corresponding to a Matthews correlation coefficient (MCC) value of 0.2 was required to

conclude if knowledge had been transferred. From the eight prioritised endpoints, Effiris

was able to transfer knowledge for six targets. The main factor that hampered

knowledge transfer for the remaining two endpoints was a strong bias of the original

private data across all the contributing members.

Local 

QSARs

Hybrid 

QSARs

QSARs benefit from 

shared knowledge?

Performance
(MCC)

0.50 0.54 YES

Coverage
(%)

50 71 YES

A wealth of knowledge is locked in high-quality proprietary data silos and allowing QSAR models to

access this knowledge would lead to unprecedented performances and decision support.

Federated learning can overcome the confidentiality through using a privacy-preserving approach

to extract knowledge from proprietary data and facilitate pre-competitive collaboration [2].
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User-friendly federated learning platform 

and workflow integration tools

To facilitate the adoption of federated QSAR models across the organisations in the

Effiris consortium, a user-friendly platform was developed to support model building,

validation and deployment. In addition, the platform allows users to control when

knowledge is shared. Effiris models are automatically deployed to a web service and

can be easily consumed through ready-to-use APIs. The platform facilitates integration

of Effiris predictions with existing environments, for example, PipeLine Pilot protocols,

Knime workflows, Jupyter notebooks or directly in existing web portals and thus

enabling user to readily consume the knowledge within the federated models.

Effiris provides decision support through its applicability domain framework [3], where the

off-target prediction is presented alongside a decidability and reliability score, which

reflect the concordance and the density of the supporting information, respectively.
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