Updated Dermal Sensitisation Thresholds derived using an in silico expert system and an expanded Local Lymph Node Assay dataset

Martyn L. Chilton^a, Anne Marie Api^b, Robert Foster^a, G. Frank Gerberick^c, Maura Lavelle^b, Donna S. Macmillan^a, Mihwa Na^b, Devin O'Brien^b, Catherine O'Leary-Steele^a, Mukesh Patel^a, David J. Ponting^a, David W. Roberts^d, Robert J. Safford^e, Rachael E. Tennant^a

^a Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK ^b Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA ^c GF3 Consultancy, LLC, West Chester, OH, USA

Project aim:

- sensitisers, leading to an HPC DST = $1.5 \mu g/cm^2$.^[6]

References

- incorporating mechanistic chemistry domains. Regul. Toxicol. Pharmacol. 60, 218–224
- classified as reactive. Regul. Toxicol. Pharmacol. 72, 694-701
- Gilmour, N. et al., 2020. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul. Toxicol. Pharmacol. 116, 104721
- Roberts, D.W. et al., 2015. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied. Regul. Toxicol. Pharmacol. 72, 683–693
- Nishijo, T. et al., 2020. Application of the dermal sensitization threshold concept to chemicals classified as high potency category for skin sensitization assessment of ingredients for consumer products. Regul. Toxicol. Pharmacol. 117, 104732

^d School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK ^e B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants, NN10 6AG, UK

- highly potent chemicals (i.e., those with an EC3 < 64 μ g/cm²).
- Using Derek's reactivity assignment, updated DST values were derived from the 95th percentile of each gamma distribution.

assessment of skin sensitisation.

• Use of Derek Nexus automates the reactivity classification, with a similarly high performance to that of a human expert.

xpert86%64%exus87%61%	ensitivity	ier
exus 87% 61%	86%	xpert
	87%	exus
exus 85% 63%	85%	exus

• The updated DSTs are similar to the original values, despite

• The updated DSTs are highly protective of human health.

ice to value	Change in no. of chemicals	Probability that EC3 > DST
fold	+ 2.1-fold	99.7%
fold	+ 1.4-fold	98.2%
fold	+ 1.3-fold	98.6%

• The expanded LLNA dataset contains three times as

• The in silico expert system Derek Nexus can automatically classify chemicals into a DST category.

Newly derived reactive (non-HPC) DST = 73 µg/cm².

• The updated DSTs are similar to the published thresholds and remain protective of human health.

• It is hoped that these updated thresholds will be useful within a quantitative (next generation) risk