David J. Ponting, Michael J. Burns, Rachael E. Tennant, Andrew Thresher Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK

OBJECTIVES

- Software tools can assist with the process of ICH M7 impurity assessment in a number of areas
 - Expectation they are regularly updated
- This work aims to ensure the continued relevance of Lhasa Limited QSAR models, purge predictions and databases for M7 assessment of N-nitrosamine compounds

MAIN RESULTS

- Significant increase in coverage in Vitic
- Updated Derek alerts show improved specificity without decrease in sensitivity
- Sarah has learned that there are areas of negative chemical space within the overall class of N-nitrosamines
- Mirabilis contains predictions for the purge of Nnitrosamines and can support ICH M7 Option 4 control

APPROACH

- Toxicity data for N-nitrosamine compounds was curated from the public literature and proprietary sources
 - This data was made available in Vitic
 - Updated QSAR tools Derek and Sarah Nexus
- Data for N-nitrosamine formation and purge was curated
 - Updated purge analysis tool Mirabilis

IMPACT

- Evaluate Ames reliability (see poster #274)
- Roll out nitrosamine-relevant data across products
- Nitrites in Excipients data-sharing group established
- Additional experimental data being generated
- More reliable predictions = better submissions

• For more information, contact:

Dr David J Ponting, david.ponting@lhasalimited.org

- ICH M7 allows the use of in silico tools in a variety of ways
 - Lhasa products impacted are shown at right
 - Those discussed in this presentation highlighted
- There is a requirement that QSAR models are up-to-date
- N-Nitrosamine impurities are a significant challenge for pharmaceutical industry
 - Critical to ensure that they are accurately predicted
- Questions to ask included:
 - What is known about nitrosamine toxicity and reactivity?
 - Which nitrosamines have been studied in the past?
 - Where are the data gaps?
 - Is the experimental data reliable?
 - Are all nitrosamines hazardous?
 - Can nitrosamines form in different ways to nitrite + amine?
 - How can a nitrosamine be purged once formed?

Figure from: Ponting et al, "Use of Lhasa Limited products for the in silico prediction of drug toxicity", ch. 17 of In Silico Methods for Predicting Drug Toxicity, ed. Benfenati (2nd Edition), Springer, in press

OBJECTIVES

50

Carcinogenicity

Ames test

vitic 2019.1 Vitic 2018.1 Vitic 2018.1

Ames test

- An extensive search of the public literature was performed, resulting in a significant increase in the number of Nnitrosamines in the Vitic database, especially in the set of compounds with both Ames test and rodent carcinogenicity data.
- This dataset was then used to update the statistical Sarah Nexus model
- Data was also provided to expert scientists to investigate for potential updates to the Derek Nexus alerts
- The freely-available Lhasa carcinogenicity database was also updated where the newly-added data was suitable
 - 117 compounds have Gold TD50s
 - 46 of these also have Lhasa TD50s¹

APPROACH – REACTIVITY DATA

- How are nitrosamines formed? Understanding conditions necessary for formation informs the risk assessment
 - A thorough review of conditions and mechanisms of formation¹
 - Developing Mirabilis alerts where formation could occur
 - Provide a warning to ensure the risk is considered

•

- $R_{2} \xrightarrow{R_{1}} H$ $R_{2} \xrightarrow{N_{H}} H$
- Identify knowledge of nitrosamine reactivity and identify gaps
 - A thorough review of conditions and mechanisms of reactions²
 - Update Mirabilisto reflect current knowledge of reactivity

- Purge assessments can de-risk formation and carryover of nitrosamines³
 - Component parts (e.g. Amine and nitrite) must be present together under appropriate conditions to pose a risk
 - Where risk exists, process controls may still allow the risk to be managed

¹ Lopez-Rodriguez *et al* (2020), *Org. Process Res. Dev.*, **24**, 9, 1558–1585 ² Borths *et al*, N-Nitrosamine Reactivity: A Survey of Reactions and Purge Processes. *Org. Process Res. Dev.* - Manuscript submitted ³ Burns *et al* (2020), *Org. Process Res. Dev*, **24**, 8, 1531-1535

MAIN RESULTS – UPDATES TO QSAR TOOLS

- Nitrosamines without α-CH₂ groups are typically negative
 - Excluded from Derek alert for mutagenicity if dialkyl/aryl
 - *Cyclic* without α -CH₂ excluded from carcinogenicity alert
 - Dialkyl where one side is *tert*-butyl derivative also excluded
- Descriptions updated to support expert review of other N-nitrosamines
 - e.g. which features reduce carcinogenic potency?
- Derek Nexus specificity has been improved with negligible cost to sensitivity
 - One false negative introduced for Ames unusual strain, potential alternative mechanisms, positive carc and in Sarah Nexus thus expert review needed
 - Specificity is still low since very conservative approach taken
- Further experimental data will allow further refinement of the alerts
- Results of working group (see talk: Cross and Ponting "*Predicting N-Nitrosamine* Activity from Structure-Activity Relationships") will be incorporated
- Performance statistics for Sarah Nexus not shown since are a statistical tool selfpredicting a training set
 - Running updated training set through older model gave 34 FPs and 9 FNs
 - All except 6 FP excluded from training set compounds now report correctly

IMPACT/SIGNIFICANCE

- Curated dataset allows investigation of the reliability of the Ames test (poster #274)
- Updated QSAR tools give higher performance but still err on the side of conservatism
- Significantly expanded Derek alert descriptions aid expert review
- Large dataset based on public data now available in Vitic
- Nitrites in Excipients data-sharing group established to better understand that source of N-nitrosamine contamination
- Additional work being undertaken on both quality and safety aspects
- This work is described in a number of publications

