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Experiment: 8 pharmaceutical

companies federated data and

trained a new QSAR model for

hERG inhibition

Result: The federated model

outperformed every other model

trained on a single source of data

Problem: Large sources of high-quality and

relevant data are inaccessible for modelling as

they reside in proprietary data silos

Outcome: User’s QSAR models may struggle

to generate confident predictions as they

venture into new areas of chemical space
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Q. Which endpoints and assays?

A. Survey of consortium performed

Q. Which thresholds to use?

A. Target-specific thresholds

Data silo 1

Data silo 2

Federated

QSAR model

Data silos

Models can be improved

by combining different

types of bioactivity data

Lhasa has developed an application

called Effiris to enable federated learning
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QSAR models benefit from relevant data
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Federated learning is a privacy-preserving approach 

to distil and share knowledge between organisations in 

a pre-competitive manner

Federated

QSAR model

• The applicability domain of QSAR models is in part

governed by the training set

• Therefore, decision making based on QSAR methods is

limited to knowledge built on in-house data



hERG Inhibition: Proof-of-Concept Study
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Models trained from multiple sources through federated

learning (green bars) outperformed every single model

trained on a single source of data (blue bars). The

performance of the federated models is similar to the

internal validation of the test set (purple bar).

8 pharmaceutical companies were involved in a 

proof-of-concept study modelling hERG inhibition

1. Train models on 

proprietary data

2. Predict activity 

on public structures

3.Consolodate labels 

and train model

Method
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1) N. Papernot et al. 2017 https://arxiv.org/abs/1610.05755 2) R. Preissner et al. 2018 https://doi.org/10.1021/acs.jcim.8b00150

Pharmaceutical companies

https://arxiv.org/abs/1610.05755%202
https://doi.org/10.1021/acs.jcim.8b00150


Aligning data for secondary pharmacology profiling

Industry survey to identify 

priority endpoints

1. Assay survey identifying the protocols 

used and the subsequent decisions made

Established target-specific thresholds to provide meaningful outputs.

Thresholds informed by:

• Given the success of the proof-of-concept study, the approach has been extended to federate data across 

multiple partners focusing on secondary pharmacology profiling

• To enable federation of data across multiple endpoints, alignment is required across the consortium to 

establish what to model and how to model it:

2. Potency of known ligands

POSITIVE

Example receptor pX50

Median potency for 

known drugs

6.5

Endogenous ligand 8.5

NEGATIVE

1) Bowes et al. 2012 https://doi.org/10.1038/nrd3845 2) Lynch et al. 2017 https://doi.org/10.1016/j.vascn.2017.02.020

3) Bofil et al. 2019 https://dx.doi.org/10.1016%2Fj.drudis.2019.06.007

https://doi.org/10.1038/nrd3845%202
https://doi.org/10.1016/j.vascn.2017.02.020%203
https://dx.doi.org/10.1016%2Fj.drudis.2019.06.007


Maximising data & Future perspectives
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Future Perspectives

• Lhasa Limited continues to develop an application called Effiris which enables the federation of data to 

train new models with greater knowledge of bioactivity whilst preserving the privacy of user’s data

• Effiris will be developed to further support secondary pharmacology use-cases

• Future research will examine the potential to build federated regression models using this technology

Please get in touch if you would like to know more… adrian.fowkes@lhasalimited.org
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Test MCC Coverage MCC Coverage

Random split 0.75 0.65 0.76 0.68

Temporal split 0.13 0.52 0.33 0.56

Combining different datatypes produced a model with more 

knowledge of bioactivity compared to a model solely trained 

on quantitative data 

Models can be improved by combining different types of bioactivity data


