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Challenge: Quantitative structure-activity relationship (QSAR) models trained on a single Qualitative models require thresholds to distinguish between different compound classes. Many factors influence the performance of a model, including the composition of the

data source tend to have limited coverage against data from other sources. This is a Ideally, these thresholds should be relevant to decision making. The establishment of dataset, the descriptors used, and the modelling algorithm deployed. To assess the

particular issue when predicting proprietary data using models trained on public data. thresholds can be influenced by the potency of reference compounds and assay sensitivity. To impact of the training data on the performance of the model, the composition of the
define thresholds for federated models, data from the public domain and knowledge from dataset was varied, and the model performance was assessed by cross-validation (Table

Approach: Federated QSAR models trained on multiple data sources will produce public

, , , , Lhasa members were used to define inactive, low-risk and high-risk compounds (Figure 4). 3 and Figure 5). The analysis shows that datasets generated from the public domain can
models covering a wider area of chemical space (Figure 1).

produce performant models, indicating that increased feasibility of producing a federated
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datasets and initial models trained on the datasets are presented below (Table 1 and Table 2).

—

Number of Compounds
o N

including Bowes et al.” and Lynch Il et Bowes Lynch Figure 5. Performance of models for the adenosine A2a receptor trained on different datasets
al.2. In addition to these targets, Lhasa 4 Table 1. Composition of the training sets assessed by 4:1 cross-validation.
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publicly available bioactivity databases contribute to the training of federated models, that will allow users to cover wider areas of
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preliminary models (Figure 3). :
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