Interpreting ICHQ11: A Risk Assessment Tool for Assessing Starting Material Acceptability

Larry Wigman
Genentech – SMACQC
Webinar - Lhasa Mirabilis Users Group
November 9th, 2017
Overview

- A Changing Regulatory Climate For Starting Materials
- Selection of Regulatory Starting Material
 - A new Risk Assessment Tool
 - based on EMA Reflection Paper and ICHQ11 Q&A
- Erivedge Example - Disclosure of more Synthetic Steps
 - More Highly Reactive, Potentially Genotoxic Intermediates
 - Leveraging M7 Control Options
 - Applying Purging Rationale
- Opportunity to add RSM Risk Assessment Tool to Mirabilis
Industry and Health Authorities were interpreting ICH-Q11 Differently

- Increased HA Scrutiny of Starting Materials
- Challenges for Phase 3 and Registration
- Significant Queries even for Phase 1
- Route, specifications, COA’s
Changing Regulatory Climate for Starting Materials

• EMA Reflection Paper on ICHQ11

• ICH Question and Answer Paper
 - Focused on:
 • Proximity and Purging Power
 • Stages and Steps
 - “Telescoped” Process

• Complexity and Criticality

• Change Control and GMP
Risk Assessment – A New Tool for Genentech/Roche

- Distilled down to the most essential criteria
 - Proximity
 - sufficient number of Stages

- Purging Power
 - Impurity purging steps/Isolations

- Complexity
 - % Wt of the API
 - Number of Chiral Centers
 - Number of Substitutions
 - Number of rings

- Impurity Carryover

- Stability
Calculation of the RSM Risk Score

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Instruction</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond forming stages to API</td>
<td>Count all bond forming (chemical) steps</td>
<td>1 to n</td>
</tr>
<tr>
<td>No of isolated steps to API</td>
<td>Count all isolations (cryst. and product dist.)</td>
<td>1 to n</td>
</tr>
<tr>
<td>% w/w of API</td>
<td>Count only the part which ends-up in the API</td>
<td>1-100</td>
</tr>
<tr>
<td>No of stereogenic centers</td>
<td>Count all stereogenic (chiral) centers</td>
<td>0 to n</td>
</tr>
<tr>
<td>No of substituted aryls or double bonds</td>
<td>Count 1 per substituted aryl and substituted double bond</td>
<td>0 to n</td>
</tr>
<tr>
<td>No of rings</td>
<td>Count all rings</td>
<td>0 to n</td>
</tr>
<tr>
<td>Impurity carry over to API</td>
<td>1 if at least one impurity is carried over to API</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Instability</td>
<td>1 if instability is observed or may arise</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

\[
\text{Risk Score} = \frac{4}{A} + \frac{8}{B} + (C \times 0.06) + D + E + F + G + H
\]

- < 8 low
- 8 - < 10 medium
- > 10 high
Demonstration - Vemurafenib

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Bond Forming Stages</th>
<th>Isolation Steps</th>
<th>%W/W of API</th>
<th>Stereogenic Centers</th>
<th>Substituted Aryls or Double Bonds</th>
<th>Rings</th>
<th>Impurity Carry over</th>
<th>Instability</th>
<th>Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 1</td>
<td>4</td>
<td>4</td>
<td>53</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>SM 2</td>
<td>4</td>
<td>4</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>SM 3</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

\(^{a}\) Protection of indole and deprotection of 2,6-dichlorobenzoyl group are counted for bond forming stages by offering quality control opportunities.

- No starting materials identified as high risk
- Materials were globally accepted health authorities
Case Study – Erivedge

- Approved in 2012
 - 150mg Capsule QD
 - Basel Cell Carcinoma

© 2009 Genentech, Inc.
Case Study – Erivedge

- Approved in 2012
 - 150mg Capsule QD
 - Basel Cell Carcinoma
 - 10 ppm = TTC
 - >10 year dosing, No S9 Consideration

- Synthetic Scheme Analysis
 - For RSM Risk
 - RSM Synthesis: New PGI’s Disclosed

- Selective AMES Testing

- Justifying Options 3
 - no Finished API Specifications for PGI’s
 - Purge Power and Reactivity Rationale
 - Confirmation of Purge Power
GMP Synthesis Scheme – Erivedge (vismodegib)

1) Reduction

2) Activation

3) Coupling
4) Crystallization

Milling

vismodegib (1)
Increased Concern about Impurities from non-GMP Steps

- Route assessment
- Change Control
- Control Strategy
Synthesis Scheme – Risk Assessment of RSM’s

RSM 1

1) Reduction

3)

3) Coupling
4) Crystallization

Milling

vismodegib (1)

RSM 2

2) Activation

2)

SO₂Me

© 2009 Genentech, Inc.

A Member of the Roche Group
Risk Assessment of RSM’s for Erivedge

Table 1: Risk Assessment of SM 1 and SM 2

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Bond Forming Stages</th>
<th>Isolation Steps</th>
<th>%W/W of API</th>
<th>Stereogenic Centers</th>
<th>Substituted Aryls or Double Bonds</th>
<th>Rings</th>
<th>Impurity Carry over</th>
<th>Instability</th>
<th>Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 1</td>
<td>1</td>
<td>3</td>
<td>56</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>14.0</td>
</tr>
<tr>
<td>SM 2</td>
<td>2</td>
<td>2</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.6</td>
</tr>
</tbody>
</table>

SM1 Nitro aromatic: Characterized as high complexity by health authorities

- **Structure:** ![SM1 Nitro aromatic](image)

SM 2 Sulfonic Acid: Commercially available, high purity, well characterized

- **Structure:** ![SM 2 Sulfonic Acid](image)

Contribution to MW is due to heteroatoms
Mitigate Risks for RSM 1

- Demonstrate Characterization and Purity
- Qualify Vendors and Produce under change control
- Disclose RSM chemistry
- Assess RSM routes for PGI’s
- Develop control strategy for RSM PGI’s
Two Vendors and two Routes to RSM1

Vendor 1
Negish Route

Vendor 2
Pyrimidinium Route

© 2009 Genentech, Inc.
PGI’s from In-Silico Assessment

Vendor 1
Negishi Route

Vendor 2
Pyrimidinium Route
AMES Testing on In-Silico Alerts

Vendor 1
Negishi Route

Vendor 2
Pyrimidinium Route
Challenging Methods for PPM Level

Vendor 1
Negishi Route

Vendor 2
Pyrimidinium Route

© 2009 Genentech, Inc.
<table>
<thead>
<tr>
<th>Option</th>
<th>Routine QC</th>
<th>Control</th>
<th>Analytical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Most Challenging</td>
<td>Impurity specified in drug substance</td>
<td>PPM level methods required for routine analysis -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acceptance criteria \leq TTC/LTL</td>
<td>Difficult for QC Labs</td>
</tr>
<tr>
<td>2</td>
<td>Challenging</td>
<td>Impurity specified upstream (Starting material, intermediate or as in-process control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acceptance criteria \leq TTC/LTL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Typical Testing</td>
<td>Impurity specified upstream (Starting material, intermediate or as in-process control)</td>
<td>PPM Level methods only required to support purge studies and process validation -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acceptance criteria $> TTC /LTL (TTC or LTL x Purge factor)</td>
<td>Not required for QC Labs</td>
</tr>
<tr>
<td>4</td>
<td>No Testing</td>
<td>Impurity NOT specified and Control is Unnecessary due to high purge factor</td>
<td></td>
</tr>
</tbody>
</table>
Analytical Method Challenges

- PPM Level Sensitivity
- Complex Sample Matrix
- Highly Reactive Analyte
- Wide Range of Properties
 - Polarity
 - Molecular Weight
 - Vapor Pressure
- Low UV Absorbance
Method Development Strategy

Volatile
- Thermally stable
- GC
 - Direct Injection
 - Headspace
 - Derivatization
 - To improve volatility
 - To improve ionization for MS
 - LLE
 - LLME
 - SPE
 - SPME
 - High column loading LC-UV
 - LC-MS (SIM) LC-MS/MS (SRM)

Limited volatility
- Thermally Labile
- HPLC
 - Backflushing
 - Analyte Extraction
 - Matrix Deactivation
 - 2D-GC
 - Derivatization
Challenging Methods for PPM Level

Vendor 1
Negishi Route

Vendor 2
Pyrimidinium Route
QC Friendly method (HPLC-UV)

Column: Zorbax XDB C18, 15cm 3.0mm 3.5 micron
Mobile Phase: 1ml/min 0.05% TFA water/ACN gradient
Detection: 225 nm

LOQ 500 ppm, LOD 200 ppm
LC-MS analysis Positive Ion Mode, SIM

Aromatic nitro compound are difficult to ionize: LOD ~ percentage levels – lacks sensitivity
LC-MS negative ion mode, SIM
For Compound 8 (non-volatile acid)

<table>
<thead>
<tr>
<th>Component</th>
<th>Condition</th>
</tr>
</thead>
</table>
| Column | CSH C18 or equivalent
15.0 cm x 3.0 mm, 1.7 micron |
| Detector | Mass Spectrometer
Operation mode: negative, selective ion monitoring
Ion monitored: 156 |
| Suggested operation conditions | Fragmentor: ~ 70 eV
Capillary voltage: ~ 1300 V
Nozzle voltage: ~ 2000 V
Drying gas: ~ 12 l/min
Drying gas temperature: ~ 250°C
Nebulizer pressure: ~ 35 psig
Sheath gas temperature: ~ 160°C
Sheath gas flow: ~ 3.0 l/min |
| Mobile Phase | Mobile Phase A: 0.05% Formic acid in water
Mobile Phase B: Acetonitrile |
| Time (min) | MP-A | MP-B |
| 0 | 95% | 5% |
| 5 | 5% | 95% |
| 6 | 5% | 95% |
| 6.1 | 95% | 5% |
| Column Flow Rate | 0.5 ml/min |
| Column Temperature | 45°C |
| Injection Volume | 5 µL |
| UV Detection | Optional at 265 nm |

4 ppm standard

Sample: HO₂C-\(\text{Cl}\)NO₂

Blank
GC-MS (SIM) analysis of Compounds 6, 7 and 9

<table>
<thead>
<tr>
<th>Component</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Capillary, fused silica with (5%-Phenyl)-methylpolysiloxane phase, 30 m x 0.32 mm inner diameter, 0.1 μm film thickness or equivalent</td>
</tr>
<tr>
<td>Detector</td>
<td>Mass spectrometer</td>
</tr>
<tr>
<td></td>
<td>Operation mode: selective ion monitoring ions monitored: 172, 184, 283</td>
</tr>
<tr>
<td></td>
<td>Suggested operation conditions: Ion source temperature: ~150°C MSD transfer temperature: ~150°C</td>
</tr>
<tr>
<td>Carrier Gas</td>
<td>Helium</td>
</tr>
<tr>
<td>Column Flow Rate</td>
<td>Helium (carrier gas), approximately 5.8 mL/min</td>
</tr>
<tr>
<td>Inlet Temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>Inlet</td>
<td>Split, ratio 1:2</td>
</tr>
<tr>
<td>Split Flow</td>
<td>~ 20mL/min</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>1 μL</td>
</tr>
<tr>
<td>Temperature Program</td>
<td>Initial temperature: 135°C for 3.5 minutes Program rate: 40°C/min to 315°C Hold 7 minutes</td>
</tr>
</tbody>
</table>

Retention time (minutes)
Purging Power Demonstrated

1% of 6, 7, 8 and 9 Spiked

1) Reduction

2) Activation

3) Coupling

4) Crystallization

<4 PPM of 6, 7, 8 and 9

>2500 Purge Power

Confirmed 1000X prediction

Justified Option 3
• Regulatory approval of proposed RSM’s
 • Based on Route, Control Strategy and Manufacturers/Change Control

• Control Strategy for RSM 1
 • Developed & validated PPM Level methods
 • for 6, 7, 8 and 9 in Starting Material 1 and API
 • Generated lot history data for multiple lots
 • SM 1 and resulting API lots
 • All results < 4 ppm
 • Generated purging data for 6, 7, 8 and 9 for 1% Spiked Starting Material
 • API levels <4PPM
 • Purge factor of >25000

• Justified Option 3
 • Specification of ≤ 0.10% for 6, 7, 8 and 9 in Starting Material 1 established
 • QC HPLC Method Developed
Acknowledgements

C.J. Venkatramani
Remy Angelaud
Christine Gu
Lutz Muller
Hiroshi Iwamura
Francis Gosselin

Rolf Schulte Oestrich
Wolfgang Göhring
Stefan Hildbrand
Fabian Schwarb
Jean-Philippe Crochard

References

Mutagenicity (Genotoxicity)

Induce genetic damage and fixation
- Gene mutation
- Larger scale chromosomal damage
- Recombination and numerical chromosome changes

Cause cancer or heritable changes
- Carcinogenicity more easily detected

<table>
<thead>
<tr>
<th>Impurity Classification</th>
<th>Definition Weight of Evidence</th>
<th>Approach to Control Human Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Mutagenic and carcinogenic</td>
<td></td>
</tr>
<tr>
<td>Category 2</td>
<td>Mutagens with unknown carcinogenic potential or a “close-in” analog</td>
<td></td>
</tr>
<tr>
<td>Category 3</td>
<td>Alerting structure – Unique but uncertain Relevance</td>
<td></td>
</tr>
<tr>
<td>Category 4</td>
<td>Alerting structure – Non-unique compared to API</td>
<td></td>
</tr>
<tr>
<td>Category 5</td>
<td>No Structural Alerts</td>
<td></td>
</tr>
</tbody>
</table>

M7 Guidance

M7 provides a risk based exemption (up to 14 days) for Phase 1 (treat as non-genotoxics)

ICH Q3 controls apply
Compound Evaluation

- Synthesis scheme
 - Raw materials
 - Intermediates
 - Reagents

- Impurities detected in the API
 - Byproducts
 - Degradation products

- Readily predicted Impurities
 - Predominantly in final steps
 - Stress Studies

M7 specifies Full AMES/GLP Like Testing – expect more positive results than from AMES II Tests
M7 LTL limits: Individual and Multiple Mutagenic Impurities

Acceptable Intakes in relation to ‘less-than-lifetime’ (LTL) exposure

<table>
<thead>
<tr>
<th>Duration of Treatment</th>
<th>< 1 month</th>
<th>>1-12 months</th>
<th>>1-10 years</th>
<th>>10 years to lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily intake [µg/day]</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Acceptable Intakes for **multiple mutagenic impurities (NMT 3x individual limit)**

When 3 or more mutagenic impurities are controlled

<table>
<thead>
<tr>
<th>Duration of Treatment</th>
<th>< 1 month</th>
<th>>1-12 months</th>
<th>>1-10 years</th>
<th>>10 years to lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily intake [µg/day]</td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

Only impurities that are specified in the final drug substance specification contribute to the calculation for Total.