Quantitative prediction of skin sensitisation potency based on structural alert spaces

vICGM, April 2016

Martyn Chilton
Scientist
martyn.chilton@lhasalimited.org
Overview

• Background

• Lhasa EC3 dataset
 • Data gathering and curation
 • Composition

• EC3 model
 • Methodology
 • Performance
 • Limitations
 • Demonstration

• Conclusions
Background: Derek Nexus and skin sensitisation

• Derek Nexus has 88 alerts for skin sensitisation
 • Based on assay data from mice, guinea pigs and human
• Currently we make qualitative predictions
 • Hazard identification
• We also want to be able to quantitatively estimate skin sensitisation potency
 • To aid in risk assessment
 • Desirable for ethical and regulatory reasons
 • Requires skin sensitisation potency data
Background: The LLNA

• The murine Local Lymph Node Assay (LLNA) is the gold standard assay for predicting skin sensitisation

• Measures the proliferation of T-lymphocytes in the lymph nodes
 • One of the key events in the skin sensitisation Adverse Outcome Pathway (AOP)

• Provides a measure of potency through an EC3 value
 • Estimated concentration of a compound that causes a 3-fold increase in lymphocyte proliferation compared with controls

Background: The LLNA

- EC3 values have been shown to correlate with human skin sensitisation potential
Background: The LLNA

- EC3 values have been shown to correlate with human skin sensitisation potential.
- Sensitisers can be assigned to one of four ECETOC potency categories:

<table>
<thead>
<tr>
<th>Extreme</th>
<th>Strong</th>
<th>Moderate</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC3 (%)</td>
<td>0.1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Kimber et al., Food Chem. Toxicol. 2003, 41, 1799-1809
Lhasa EC3 dataset: Data gathering and curation

• We gathered as much publicly available EC3 data as possible

• The data was curated to ensure it was of high quality
 • Original experimental reports were located and examined
 • Unsuitable/unreliable data were not included in the final dataset

• When more than one LLNA study was found for the same compound the median EC3 value was taken
Lhasa EC3 dataset: Composition

• Data from 1051 LLNA studies were collected, resulting in a dataset containing 664 unique compounds

• Of these, 465 fire only one alert in Derek Nexus
 • These compounds span a good range of EC3 values
 • They include some non-sensitisers that fire a Derek alert
EC3 model: Initial considerations

- We would like to make use of existing knowledge captured in Derek’s alerts for skin sensitisation
 - Each alert space corresponds to a group of chemicals which are believed to react with skin proteins through the same mechanism
- Any model built needs to be transparent and interpretable
- The methodology must be scientifically defensible
EC3 model: Possible methodologies

- Regression models for different structural alerts
 - Some success, but not very interpretable

- Average EC3 values for each structural alert
 - Worked well for some alerts, but not others

- Finding nearest neighbours from within an alert space
 - Provided transparent and interpretable predictions
EC3 model: Possible methodologies

- Regression models for different structural alerts
 - Some success, but not very interpretable

- Average EC3 values for each structural alert
 - Worked well for some alerts, but not others

- Finding nearest neighbours from within an alert space
 - Provided transparent and interpretable predictions
EC3 model: Alert-based nearest neighbours

- **Query compound**
- **Lhasa EC3 dataset**

1. Match alert in Derek Nexus
2. Fingerprint query
3. Select NN
4. Fingerprint NN
 - ≥ 3 NN
 - < 3 NN: Insufficient data
5. Keep up to 10 most similar NN
6. Weighted mean $\frac{MW}{EC3}$
7. EC3 value predicted
EC3 model: **Alert-based nearest neighbours**

1. **Query compound**
 - Match alert in Derek Nexus
 - Fingerprint query

2. **Select NN**
 - Keep up to 10 most similar NN

3. **Weighted mean**
 - \(\frac{MW}{EC3} \)

4. **EC3 value predicted**

 - If \(\geq 3 \) NN
 - Insufficient data if \(< 3 \) NN
EC3 model: Alert-based nearest neighbours

1. **Query compound**
2. Match alert in Derek Nexus
3. Fingerprint query
4. Select NN
5. ≥ 3 NN: Fingerprint NN
6. < 3 NN: Insufficient data
7. Keep up to 10 most similar NN
8. Weighted mean $MW / EC3$
9. EC3 value predicted

Chemical space
EC3 model: Alert-based nearest neighbours

Query compound → Match alert in Derek Nexus → Fingerprint query

Lhasa EC3 dataset → Select NN

≥ 3 NN → Fingerprint NN → Keep up to 10 most similar NN → Weighted mean \(MW / EC3 \) → EC3 value predicted

< 3 NN → Insufficient data

\[
\frac{MW_q}{EC3_q} = \frac{\sum_{n=1}^{N} \left(\frac{MW_n}{EC3_n} \right) T_{q,n}}{\sum_{n=1}^{N} T_{q,n}}
\]

- \(q \) = query compound
- \(N \) = number of nearest neighbours
- \(n \) = \(n^{th} \) nearest neighbour
- \(T_{q,n} \) = Tanimoto index between \(q \) and \(n \)

A. Natsch et al., *Toxicol. Sci.* 2015, 143, 319-332
EC3 model: Alert-based nearest neighbours

1. Query compound
2. Match alert in Derek Nexus
3. Fingerprint query
4. Select NN
5. Fingerprint NN
6. Keep up to 10 most similar NN
7. Weighted mean $\frac{MW}{EC3}$
8. EC3 value predicted

- Lhasa EC3 dataset
- Insufficient data

Graph showing the relationship between similarity to query and EC3 value.
EC3 model: Performance

• The model was assessed using a validation set \((n = 46)\)

• Predictions were judged as accurate according to two separate criteria:
 • Within a factor of 3 of the experimental EC3 value
 • Within the same ECETOC potency category as the experimental EC3 value
EC3 model: Performance

When the model is wrong, it tends to over-predict rather than under-predict the potency.
EC3 model: Limitations

1. Coverage

- Directly linked to the size of the Lhasa EC3 dataset
 - This depends on the amount of publicly available LLNA data
- The EC3 model covers 39 of the skin sensitisation alerts within Derek Nexus
- Currently there are 49 alerts with fewer than three compounds in our dataset
 - Potential validation compounds: ~80% coverage
 - Do you have data you could share?
EC3 model: **Limitations**

2. Variability in LLNA data

- EC3 values can vary between different assay runs
 - This can be seen in the 87 compounds in the Lhasa EC3 dataset with multiple EC3 values

\[
\text{Fold variation} = \frac{EC3_{\text{max}}}{EC3_{\text{min}}}
\]

- Median = 2.3-fold variation

- This will affect the overall accuracy of the model
Conclusions

• We have developed an EC3 model which makes quantitative predictions of skin sensitisation potency
 • Built upon high quality, publicly available LLNA data
• Predictions are made by finding nearest neighbours to the query compound within defined structural alert spaces
 • Makes use of existing knowledge found in Derek Nexus alerts
• The model performs well against a validation set, both in terms of predicting EC3 values and potency categories
 • Provides transparent and interpretable predictions
Acknowledgements

• Steve Canipa
• Donna Macmillan
• Jeff Plante
• Jonathan Vessey
Thank you for your attention

Any questions?