The Nephrotoxicity of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

US ICGM 2015

Dr. William Drewe

Lhasa Limited FDA Project Team
will.drewe@lhasalimited.org
Outline

• Introduction: the kidney and nephrotoxicity

• Why predict nephrotoxicity?

• Nephrotoxicity in Derek Nexus
 • Endpoint status in Derek Nexus (v4.0, April 2014)
 • Case study: the nephrotoxicity of NSAIDs

• Challenges in nephrotoxicity prediction
The Kidney and Nephrotoxicity

- The kidney performs vital body functions including regulation and elimination

- The kidney is an essential organ for excreting pharmaceutical agents, diagnostics and metabolites → high exposure and susceptibility

- Acute Kidney injury (AKI) results from pre-renal, renal or post-renal effects
 - Pre-renal: hemodynamic alterations
 - Renal: nephritis, nephrosis, tubulopathies, necrosis
 - Post-renal: crystal nephropathy

- Many drug-related factors contribute to AKI
 - Poor solubility when concentrated in urine
 - Clinical mode of action
 - Prolonged therapy at high dose
Why Predict Nephrotoxicity?

• Drugs are responsible for a significant number of community and hospital acquired renal complications\(^1\)

• Drug induced AKI is a major reason for the late-stage failure of drugs in development\(^2\)

• **Addressing the potential for drug-induced AKI early in drug development ensures both patient safety and efficient, successful clinical development**

• Few *in silico* methods or *in vitro* assays for the prediction of nephrotoxic hazard

1. Naughton, American Family Physician, 2008, **78**, 743-750
2. Redfern et al, The Toxicologist 2010, **114**, 231
Nephrotoxicity in Derek Nexus (v4.0, April 2014)

- 4 full alerts for the nephrotoxicity of nucleoside/nucleotide drugs
- 1 full alert for the nephrotoxicity of an NSAID sub-class
- 54 RapidPrototype alerts for urinary tract toxicity endpoints
 - Based on an FDA CDER dataset relating to post-marketing adverse events in man

- 1 full and 34 RapidPrototype alerts for nephrotoxicity prediction from other projects

- Lhasa Limited aim to use the existing RapidPrototype alerts as the basis for expanding the number of full nephrotoxicity alerts in Derek Nexus
1. **NSAID sub-classes** were identified and evaluated for **publicly available in vivo reports** of nephrotoxic events in **man and other mammals**.

2. **Expert assessment** and **peer-review** of toxicity data and suitability for development into a nephrotoxicity alert. **Plausible mechanisms** investigated.

3. **Expert activity calls** made and added to internal nephrotoxicity dataset.

4. **Structure activity relationships (SAR) defined** and toxicity alerts implemented in Derek Nexus.

5. **Alert validation** against **FDA CDER urinary tract toxicity dataset**.³

6. **Mechanistic knowledge** used to construct tentative **AOPs** to describe the nephrotoxicity of NSAIDs.

³ Ursem et al, Regulatory Toxicology and Pharmacology (2009), 54, 1-22
The Nephrotoxicity of NSAIDs

- **107 NSAID** compounds given **peer-reviewed expert call**
 - **62 NSAIDs (58%)** - nephrotoxic, weakly nephrotoxic or equivocal
 - **45 NSAIDs (42%)** - no nephrotoxicity data (active or inactive) → equivocal
 - Based on the available data, it was not possible to give any NSAID compound an unequivocal ‘inactive’ expert call for nephrotoxic hazard in man or mammals

- **6 full nephrotoxicity alerts for NSAIDs implemented in Derek Nexus**
 - 1 alert implemented in the last Knowledge release (v4.0, April 2014)
 - 5 alerts prepared for the next Knowledge release
The Nephrotoxicity of NSAIDs

<table>
<thead>
<tr>
<th>NSAID alert</th>
<th>Reasoning likelihood</th>
<th>Nephrotoxic examples (man or mammals)</th>
<th>References for clarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plausible</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Plausible</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Plausible</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Plausible</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Plausible</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Plausible</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>
The Nephrotoxicity of NSAIDs

<table>
<thead>
<tr>
<th>NSAID alert</th>
<th>Reasoning likelihood</th>
<th>Nephrotoxic examples (man or mammals)</th>
<th>References for clarity</th>
<th>Compounds which activate a toxicity alert from the FDA CDER dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Active in dataset (TP)</td>
<td>Inactive in dataset (FP)</td>
<td>% Positive predictivity</td>
</tr>
<tr>
<td>1</td>
<td>Plausible</td>
<td>4</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Plausible</td>
<td>2</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Plausible</td>
<td>2</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Plausible</td>
<td>3</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Plausible</td>
<td>4</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Plausible</td>
<td>2</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

- Validation against the **FDA CDER dataset** of compounds with reported **post-marketing adverse nephrotoxic events in man** (496 positive/1113 negative)

→ **Confirmed NSAIDs are one of the most nephrotoxic classes in the dataset**
The Nephrotoxicity of NSAIDs

<table>
<thead>
<tr>
<th>NSAID alert</th>
<th>Reasoning likelihood</th>
<th>Nephrotoxic examples (man or mammals)</th>
<th>References for clarity</th>
<th>Compounds which activate a toxicity alert from the FDA CDER dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Active in dataset (TP)</td>
</tr>
<tr>
<td>1</td>
<td>Plausible</td>
<td>4</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Plausible</td>
<td>2</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Plausible</td>
<td>2</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Plausible</td>
<td>3</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Plausible</td>
<td>4</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Plausible</td>
<td>2</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Expert assessment** of the inactive (FP) compounds in the FDA CDER dataset showed:
 - 9 compounds → reported nephrotoxic in man or mammals
 - 5 compounds → no nephrotoxicity data → equivocal
 - 4 compounds → pro-drugs of active compounds
 - 2 compounds were not NSAIDs
The Nephrotoxicity of NSAIDs

- NSAIDs → acute renal failure (ARF), with or without nephrotic syndrome, occasionally secondary to acute interstitial nephritis.

![Diagram showing the mechanism of NSAID nephrotoxicity](image)

- Interact with organic anion transporters on the basolateral membrane
- Accumulate within proximal tubule cells
- Uncouples and/or inhibits mitochondrial oxidative phosphorylation
- → Acute tubular necrosis and ARF

W Drewe and MB Surfraz, SOT 2015 Poster, abstract 1326 – available through the Lhasa Limited website
The Nephrotoxicity of NSAIDs

- NSAIDs → acute renal failure (ARF), with or without nephrotic syndrome, occasionally secondary to acute interstitial nephritis.

- Glomerular filtration and/or efflux from proximal tubule cells → NSAID concentration at the renal papillary tip
- Long-term use or excessive consumption of NSAIDs → renal papillary necrosis and irreversible renal failure

W Drewe and MB Surfraz, SOT 2015 Poster, abstract 1326 – available through the Lhasa Limited website
The Nephrotoxicity of NSAIDs

- NSAIDs → **acute renal failure (ARF)**, with or without **nephrotic syndrome**, occasionally secondary to **acute interstitial nephritis**.

Diagram:

- Basolateral membrane
- Proximal tubule cell
- Renal tissue/tubule
- Renal adverse outcome

NSAID cyclooxygenase (COX) inhibition
- Reducing prostaglandin (PG) synthesis
- Uncontrolled renal vasoconstriction
- Reduced glomerular filtration rate (GFR)
- Ischaemia of renal tissues
- Necrosis of renal tubules and/or the renal papilla and ARF

Abbreviations: Non-steroidal anti-inflammatory drug (NSAID), Cyclooxygenase (COX), Prostaglandins (PGs), Glomerular filtration rate (GFR), Blood urea nitrogen (BUN), Serum creatinine (SrCr).

W Drewe and MB Surfraz, SOT 2015 Poster, abstract 1326 – available through the Lhasa Limited website
How may these toxicity alerts and AOPs be used?

• Highlight the **nephrotoxic hazard** posed by chemicals **structurally or mechanistically related to NSAIDs**
• Aid **read-across** to predict the nephrotoxic hazard of related chemical classes
• Applied in a **nephrotoxicity screening strategy** for establishing nephrotoxic hazard

• Improve **understanding of the mechanistic rationale** for alerting compounds
• Identification of **in vitro/in vivo testing strategies** to probe nephrotoxic hazard

Improve patient safety and reduce nephrotoxic liability during late-stage drug development
Challenges in Nephrotoxicity Prediction

- Complex endpoint

- Limited quantity and variable quality of publicly available data

- There is a recognised need for improved preclinical screening and clinical diagnosis/reporting

- New data sources may allow improved *in silico* nephrotoxicity predictions to be made in the future
Acknowledgements

• **FDA CDER** for the opportunity of collaboration to improve Derek Nexus

• **FDA Project Team colleagues**
 • Bashir Surfraz – Project Leader, Lead Scientist
 • Liz Covey-Crump – Acting Principal Investigator
 • Alex Cayley, Will Drewe, Jeff Plante, Adrian Fowkes – Team members

• **Knowledge Team** colleagues at Lhasa Limited

This work was developed under a Research Collaboration Agreement (RCA) between Lhasa Limited and the Center for Drug Evaluation and Research (CDER) group at the US Food and Drug Administration (FDA).

The findings and conclusions in this presentation have not been formally disseminated by the FDA and should not be construed to represent any agency determination or policy.
Questions?