Analysis of human and *in vivo* data for hepatotoxicity modelling

Mukesh Patel

mukesh.patel@lhasalimited.org
Development of the hepatotoxicity knowledgebase

- Currently 84 alerts (22 rapid prototypes)
- Performance against repeat dose dataset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sens %</th>
<th>Spec %</th>
<th>Ppv %</th>
<th>Npv %</th>
<th>Concordance %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td>75</td>
<td>52</td>
<td>70</td>
<td>64</td>
</tr>
</tbody>
</table>

- Derek Nexus v3.0.1 KB 2014_1.0.

- Alerts use a variety of supporting data
 - Mostly human

- Issues with existing *in vivo* and human data
 - lack of definitive biomarkers
 - Mechanisms intrinsic or idiosyncratic?
 - Unbalanced datasets
 - Lack of data
eTOX data

- Repeat dose studies
 - Rat
Analysis of animal or human-based terms per alert

Hepatotoxicity terms

<table>
<thead>
<tr>
<th>Alerts</th>
<th>MOA</th>
<th>Human hepatotox terms</th>
<th>Animal hepatotox terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrences
First look at the eTOX dataset

- Real data isn’t clean or easy to model
- Many data gaps
- Lacking in histopathology
- Clustering by chemical class doesn’t reveal clear biomarkers
Conclusions

- Performance varies by dataset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sens %</th>
<th>Spec %</th>
<th>Ppv %</th>
<th>Npv %</th>
<th>Balanced acc %</th>
</tr>
</thead>
<tbody>
<tr>
<td>eTox622</td>
<td>30</td>
<td>69</td>
<td>54</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>Human282</td>
<td>76</td>
<td>52</td>
<td>65</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Human1316</td>
<td>50</td>
<td>67</td>
<td>60</td>
<td>57</td>
<td>58</td>
</tr>
</tbody>
</table>

- Derek Nexus v3.0.1 KB 2014_1.0.

- Most alerts are species-specific
Performance of alerts covering hypersensitivity

- These alerts show good positive predictivity vs human data
- Evidence provided within the alert supports this
- There is limited animal data to support these alerts
 - Expected since animal models don’t predict idiosyncrasy
Our Conclusions

• Derek Nexus performs better when predicting human hepatotoxicity

• Human toxicity is less well covered by Derek alerts based upon animal data
 • No simple correlation between animal histopathology and clinical chemistry biomarkers
 • Animal toxicity is not a good predictor of human toxicity
 • Higher doses in animals may not be relevant to humans
 • Toxicity pathways are species-specific

• For hepatotoxicity are *in silico* models better predictors of human toxicity than animal studies?
• Do human-based *in vitro* assays offer better predictivity?
Investigation of *in vitro* assay data

- Alternative methods
- Analysis of *in vitro* screens
- Biological fingerprints
- Search for co-occurrences of signals amongst assays
 - Are these a stronger measure than individual signals?
Bio-fingerprints – can we extract knowledge from them?

- Bio-fingerprints were constructed
 - For each compound create an array of *in vitro* assay outcomes
 - Did the *in vitro* assay give an inactive (0) or active (1) outcome?

Compound	Human BEP1 (HCC)	Human BEP2 (HCC)	Human BEP1 Combined	Human BEP2 Combined	HCC Combined																
Carbarsone																					
Mecrobacrol																					
Framycetin																					
Anthraclin																					
Captopril																					
Estradiol																					
Nalidixic acid																					
Glycine																					
Propranolol																					
Mifepristone																					

[Image of a table showing results of bio-fingerprints]
We used a number of data sources

• Publications
 • Morgan et al, Toxicol Sci, 2013, 136, 216-241 (634)
 • Xu et al, Toxicol Sci, 2008, 105, 97-105 (344)
 • Pedersen et al, Toxicol Sci, 2013, 136, 328-343 (250)
 • Dawson et al, Drug Metab Dispos, 2012, 40, 130-138 (85)
 • Aleo et al, Hepatology, 2014, 60, 1015-1022 (72)

• Tox21
 • Liver relevant data (7310)

• PubChem
 • Target search (245)

• ChemBL
 • Target search (660)
Data acquisition and collation workflow

• Data sets combined, conservative call generated for each unique compound (8390)

• In vivo liver toxicity call based on Human data (2029 compounds)

 • Zhu and Khrulak, Toxicology, 2014, 321, 62-72
Some combinations of assays predict better than individual assays?

• While there is a statistical relationship, we will look to see if that is mechanistically valid...

• It has been proven for BSEP and Mitochondrial toxicity
Conclusions

• Derek alerts written using human data are predictive for human outcomes
• This is not so clear for Derek alerts informed by animal data
• Looking at human in vitro datasets looks promising
 • But we need to move from a statistical relationship to one based upon mechanism (AOP)
Acknowledgements

Reine Note
Diana Suarez
Lilia Fisk
Alex Cayley
Sebastien Guesne
Katharine Briggs
Jonathan Vessey
Richard Williams
Chris Barber

Thank You
Work in progress disclaimer

This document is intended to outline our general product direction and is for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon. The development, release, and timing of any features or functionality described for Lhasa Limited’s products remains at the sole discretion of Lhasa Limited.