Setting-up of an internal multidisciplinary Vehicle Working Group to increase knowledge on excipients and recommend their use in preclinical in vivo studies

A. Delaunois1, M. Berwaer2, W. Brône2, A. Cauvin1, M. Caruso1, C. Chaussée1, P. De Ron1, F. Fallah-Arani3, F. Martin1, J. Van Asperen1

1 UCB Biopharma SPRL, Belgium; 2 UCB Pharma SA, Belgium; 3 UCB Celltech, UK

Introduction

- Enabling formulations for preclinical in vivo studies play a key role for assessing safety, pharmacodynamics, and pharmacokinetics (PK) endpoints of new molecules
- Excipients used in formulations should maximize exposure while avoiding side effects that could influence experimental results
- As new chemical entities are not always sufficiently soluble and/or bioavailable in commonly used vehicles, ‘exotic cocktails’ of various excipients are often used to prepare preclinical formulations
- Limited information has been published on the potential impact of these excipients on commonly used laboratory animals

Methodology

Step 1: Define sources of information
- Publications
 - Vitrin database of excipients (from Lhasa Ltd) containing more than 2000 records on vehicle toxicity data
- UCB data from safety pharmacology (rat Irwin and locomotor activity tests, cardiovascular telemetry) and toxicology studies
- CRO data, experience or guidelines on excipients
- Experience from VWG members and other scientists

Step 2: Define acceptance criteria per study type

<table>
<thead>
<tr>
<th>Study type</th>
<th>Criteria for acceptable vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPK</td>
<td>No PK interaction that could interfere with the interpretation of the study results, no DMSO (CYP450 interactions), no adverse reactions</td>
</tr>
<tr>
<td>CNS pharmacology</td>
<td>No behavioral changes</td>
</tr>
<tr>
<td>Immunology pharmacology</td>
<td>No interference with antibody response and immunology parameters measured</td>
</tr>
<tr>
<td>Safety pharmacology - CV</td>
<td>No changes in blood pressure or heart rate >10% from baseline, no changes in Qtc >5% (or outside the normal variability)</td>
</tr>
<tr>
<td>Safety pharmacology - Irwin</td>
<td>No behavioral score changes >1 (for parameters scored up to 4) or >2 (for parameters scored up to 8); no adverse signs</td>
</tr>
<tr>
<td>General toxicology</td>
<td>No clinical signs, no changes in clinical chemistry/hematology or histopathological changes outside historical range (other than background)</td>
</tr>
</tbody>
</table>

Step 3: Prioritize excipients to examine first
- 17 excipients selected based on their frequency of use at UCB, risk of side effects, or success in enabling formulations

Step 4: Create a sharepoint site in the UCB intranet and an e-mail address for centralizing users’ questions and concerns

Step 5: Populate results and recommendations across departments and seek feedback

Conclusions and next steps

- These recommendations are mainly based on safety data in rodents. Additional vehicle data related to DMPK or pharmacology, or non-rodent species, would help to ensure that appropriate excipients are used, depending on the purpose of the study
- The proposed recommendations are applicable for excipients used alone, as data on mixture of excipients (‘cocktails’) are rarely available.
- The VWG will continue to investigate more excipients and aims to benefit from the experience and knowledge of partners from pharmaceutical industry, academia, or CROs.

Interested ? Feel free to contact: vehicleworkinggroup@ucb.com or annie.delaunois@ucb.com

Results and recommendations

Standard (first choice) vehicles selected:
- For oral and i.p.: 1% methylcellulose, 0.1% silicon antifoam, 0.1% Tween® 80
- For i.v.: dimethylecetamide (DMSA) 30%

Maximal recommended doses for alternative (second choice) vehicles:

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>p.o.</th>
<th>i.p.</th>
<th>i.v.</th>
<th>Main effects</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylcellulose (5%)</td>
<td>Chronic</td>
<td>1 g/kg/day</td>
<td>1 g/kg/day</td>
<td>Not used</td>
<td>General toxicology reactions in dogs</td>
</tr>
<tr>
<td>Silicon antifoam (0.1%)</td>
<td>Chronic</td>
<td>0.1 g/kg/day</td>
<td>0.1 g/kg/day</td>
<td>Not used</td>
<td>General toxicology reactions in dogs</td>
</tr>
<tr>
<td>Tween® 80 (0.1%)</td>
<td>Chronic</td>
<td>0.1 g/kg/day</td>
<td>0.1 g/kg/day</td>
<td>Not used</td>
<td>General toxicology reactions in dogs</td>
</tr>
</tbody>
</table>

Objectives

- We initiated a multidisciplinary Vehicle Working Group (VWG) within UCB, with representatives of:
 - Non-Clinical Safety Evaluation
 - Non-Clinical DMPK
 - Pre-formulation
 - CNS Pharmacology
 - Immunology

- Objectives of the VWG:
 - Develop our knowledge on potential side effects of excipients in laboratory animals
 - Recommend vehicles for future use in in vivo studies
 - Harmonize procedures across departments and UCB sites
 - Serve as central contact point for questions on vehicles
 - CNS Pharmacology groups
 - Immunology Pharmacology group

Ulcerative and necrotic skin lesions observed in a rat subcutaneously injected with an excessively alkaline formulation (with the courtesy of Dr A. Popovic)