How Sarah Nexus Predicts

1. **Query compound**
 - Check if this is an exact match
 - Yes: **Display prediction**
 - No: **Fragment structure**
2. **Fragment structure**
 - **Find hypotheses**
 - Yes: For each hypothesis find kNN over example set k=10
 - Calculate confidence level for each individual hypothesis based on the kNN confidence $c_h = |S_{h,x}|$
 - No: Out of domain
 - No: Out of domain
3. **Are all fragments adequately represented in the training set?**
 - Yes: Apply reasoning
 - Calculate overall confidence level $c_x = |S_x|$ and **Display prediction**
 - No: **Find kNN over whole training set k=8**
 - No: **Calculate confidence level $c_x = |S_x|$**

Symbols:
- S_x overall signal for the query compound x
- $S_{h,x}$ signal strength of each individual hypothesis given the query x

Process correct for Sarah Nexus v2.0.1
1. Calculate the weighted signal for each hypothesis based on the kNN
$$W_{i,x} = \sqrt{\text{similarity}(x, e_i)}$$
$$WS_x = \frac{\sum_{i=1}^{k} W_{i,x} \times S_i}{\sum_{i=1}^{k} W_{i,x}}$$
$$S_i = -1$$ if $$e_i$$ is a negative example
$$S_i = +1$$ if $$e_i$$ is a positive example
2. Further moderate the signal to account for the average distance of the examples from the query structure
$$S_x = WS_x \times \frac{\sum_{i=1}^{k} W_{i,x}}{k}$$
3. Calculate confidence level for each individual hypothesis
$$\text{confidence}_{h,x} = |S_{h,x}|$$

$$k$$ number of nearest neighbours
$$e_i$$ examples in the training set
$$WS_{h,x}$$ weighted signal of each individual hypothesis given the query $$x$$
$$S_{h,x}$$ signal strength of each individual hypothesis given the query $$x$$
$$W_{i,x}$$ weighting factor
$$S_x$$ overall signal for the query compound $$x$$
$$S_i$$ signal of the nearest $$i^{th}$$ neighbour
$$m$$ number of relevant hypotheses
$$WS_x$$ weighted signal from nearest neighbours given the query $$x$$

* Process correct for Sarah Nexus v2.0.1